选材设计师
在我的硕士论文项目中,我设计了一个FDM打印机的修改,提高了机器的动力学性能。我有……阅读更多
在我的硕士论文项目中,我设计了一个FDM打印机的修改,提高了机器的动力学性能。我对FDM工艺有深入的了解,以及如何优化:打印速度,强度和质量。在许多在线3D打印和设计比赛中获奖,在过去三年中赢得了价值约2000英镑的奖品:Polymaker 3D打印挂钩锦标赛:第二名。机械工程、创意设计和DfAM的结合,创造了重量小于50g的最坚固的3D打印聚合物挂钩(无闭环)。最终的设计承受了超过1吨的载荷。(隐藏)(隐藏)多层板设计大赛:第二名。(隐藏)(隐藏)。E3D多材料STL竞赛:第二名。一套适用于多材料FDM打印的柔性钳子的设计:(隐藏)
选材设计师
专业的高级新产品设计工程师。学历合格,SolidWorks专业人员认证。在选材、DFM、DFA、DFMEA、3D建模、仿真等方面有丰富的经验。阅读更多
专业的高级新产品设计工程师。学历合格,SolidWorks专业人员认证。在材料选择,DFM, DFA, DFMEA, 3D建模,仿真和精密详细设计方面有丰富的经验。
选材设计师
机械CAD工程师;)阅读更多
机械CAD工程师;)
选材设计师
英国莱斯特大学高级机械工程硕士,获一等荣誉学位。在我的硕士期间,我有一个基于CAD建模的模块使用Solid…阅读更多
英国莱斯特大学高级机械工程硕士,获一等荣誉学位。在我的硕士期间,我有一个基于CAD建模的模块,使用Solid Works,在那里我成功地提交了一个正齿轮的CAD模型。并对模型零件进行了应力分析。这个模块让我对SolidWorks有了全面的熟练掌握,能够独立完成任何任务。同时,我有Matlab的实践经验。我已经成功地展示了许多使用各种编程算法的Matlab模拟程序。我的硕士项目是基于“使用脉冲反镀技术共沉积镍- sic以生产纳米复合材料”。大部分工作是在学校进行的,这让我利用了所有的资源和先进的技术设备,如扫描电子显微镜。课程结束后,我在工程系担任助教。我协助演示了关于管道流量测量的机械导向的第一年实验室,以及基于电路设计和分析的电气导向实验室,使用P Spice。 Also, assisted in second year labs helping students to learn about material selection in devices using CES Edupack software, as well as different engineering materials micro structural properties and processing. Furthermore, I have helped in for fourth year module involving conceptual design process for turbofan engines with improvements in aero engine design configurations. Throughout my educational & professional experiences, I have built a rigorous tendency to achieve the best possible results by approaching them with new innovative ideas.
机械工程硕士学位。旨在实现将材料选择、可制造性和性能考虑在内的创新设计。阅读更多
机械工程硕士学位。旨在实现将材料选择、可制造性和性能考虑在内的创新设计。
选材设计师
作为一名独立的工程材料顾问,我提供的咨询服务范围从参加几次会议到项目附带的长期合同。我也……阅读更多
作为一名独立的工程材料顾问,我提供的咨询服务范围从参加几次会议到项目附带的长期合同。同时提供工程设计CAD服务;2022足球世界杯预选赛时间针对中小型企业和初创企业,他们可能没有内部的能力,但需要在整个项目生命周期内生产零件和组件的CAD图纸。凭借独立所提供的灵活性,我的服务可以精确地根据您的需求进行定制,以及您需要多长时间;2022足球世界杯预选赛时间使其成为聘请专家或固定期限承包商的成本效益替代方案。我很高兴为完成的任务报价,按小时收费,或在“取消”合同的基础上对整体计划和成本限制。材料选择材料选择应该在设计周期的早期阶段进行,但经常被忽视,导致项目延迟,随后增加成本。选择最合适的材料取决于许多因素和通常的强度、韧性等参数之外的几个因素。在产品设计中,材料选择的主要目标是在满足产品性能目标的同时使成本最小化。系统地选择最好的材料,为一个给定的应用开始所需的性能。 These should be defined in the Product Design Specification (PDS), with no reference to materials at the PDS stage. For example, a thermal blanket must have poor thermal conductivity in order to minimize heat transfer. Systematic selection for applications requiring multiple criteria is more complex. For example, a rod which should be stiff and light requires a material with high Young's modulus and low density. If the rod will be pulled in tension, the specific modulus, or modulus divided by density, [E / ρ], will determine the best material. These properties also have to be ratified against the cost of the material and available production techniques for shaping and forming. A systematic approach to materials selection will be applied to your project, which will ensure that all design parameters are satisfied while minimising costs to the project. CAD CAD has become the "norm" for drafting in the engineering arena. The advantages of using CAD are numerous, but the key advantages are the flexibility and ease at which new designs can be turned into drawings and existing designs can be modified during the design process. These make CAD an essential tool in the engineers box. In the product development space, the extended features in modern CAD software are also useful visualise a product. Overall, CAD is a tool for increasing productivity, improving quality, and reducing costs. When combined with Computer-Aided Manufacture (CAM) via CNC machining equipment and, more recently, 3D printing technology, CAD can give a company options to send their model data to suppliers to get things made remotely, with just a phone call or two to confirm details, etc. This advantage is able to reduce costs by allowing suppliers to be situated anywhere in the world. I have three CAD packages that can be deployed on your project, depending on the project budget. I use AutoCAD and Salome, the latter used to create meshes for later analysis by FEA. So, depending on your needs, whether it is a one-off paper-design-to-CAD exercise or a longer term product development exercise, I have an efficient solution. FEA For engineering designs, Finite Element Analysis (FEA) is a natural follow-on from CAD. FEA allows the design (or modified design) to be analysed against its performance parameters without the expense of producing working test items. Modern FEA software includes a graphical user interface for model creation, meshing and post-processing. the calculation engine is usually "hidden" from the user and will require very little interaction, save to check the model parameters and solution accuracy. Load cases can be applied to the design and the response of the component analysed. These analyses can be fed back into the design, which can be modified accordingly. The design - analysis cycle can then be repeated as often as necessary before a working test device or prototype is made. The use of modern CAD and FEA tools makes it very quick and cost-effective to iterate design modifications and analyse them. For FEA, I use "Code-Aster" on a 64-bit Linux platform. Code Aster is an FEA tool developed and used by French energy company EDF. It is highly versatile and is capable of numerous post-processing options to allow detailed analysis of your design.
最后更新:2023年6月1日
继续使用本网站
你接受我们的饼干的政策.